Structure and Luminescent Properties of Three New Silver Lanthanide Molybdates

Fanian Shi, Jian Meng, and Yufang Ren

Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People's Republic of China

Received July 19, 1995; in revised form September 19, 1995; accepted September 20, 1995

Three new compounds Ag*Ln*Mo₂O₈ (*Ln* = Eu, Gd, Tb) crystallize with a tetragonal scheelite-type structure characterized by MoO₄ tetrahedra. The IR spectra show three absorption bands, which correspond respectively to the ν_1 , ν_2 , and ν_3 modes of the tetrahedral-MoO₄^{2–} groups. The emission of AgGdMo₂O₈ shows the band of the MoO₄^{2–} groups around 600 nm wavelength with very weak intensity. Both AgEuMo₂O₈ and AgTbMo₂O₈ emit intensely, and the concentration quenchings of both Eu³⁺ and Tb³⁺ luminescences are very weak. For all compounds, Ag⁺ luminescence is not observed. © 1996 Academic Press, Inc.

1. INTRODUCTION

There are a considerable number of molybdates that have the scheelite (CaWO₄) structure. These include compositions that fit the formulas AMO_4 and $A'BM_2O_8$, where $A' = Li^+$, Na⁺, K⁺, Rb⁺, and Cs⁺; $A = Ca^{2+}$, Sr²⁺, Ba²⁺, Pb²⁺, and Hg²⁺; B = rare earth ions; and $M = Mo^{6+}$ or W⁶⁺ (1–4). The latter compounds with scheelite-related structure have often been used as hosts for rare earth ions, for fundamental studies in the field of fluorescence. Another composition, which has the formula Ln_2BMO_8 ($B = Ge^{4+}$, $M = Mo^{6+}$, W⁶⁺), crystallizes also in the scheelite structure. The luminescent properties of these compounds were reported in literature (5).

In recent years the crystal structures of the compounds $ALnW_2O_8$ and $ALnMo_2O_8$ (A = alkali metal ions; Ln = rare earth ions) have been determined. The crystal structure and luminescent properties of $CsLnW_2O_8$ (Ln = Eu^{3+} , Tb^{3+}) and $AEuM_2O_8$ (A = Li^+ , Na^+ , K^+ , Rb^+ , and Cs^+ ; and $M = Mo^{6+}$, W^{6+}) have recently been studied by researchers (6–8). Some of these compounds have a scheelite-related crystal structure, but others have a completely different structure. A marked property of these systems is the fact that they do not show obvious concentration quenching.

In the present paper the structures, IR spectra, and luminescent properties of some silver rare-earth molybdates are reported.

2. EXPERIMENTAL

AgLnMo₂O₈ (Ln = Eu, Gd, Tb) compounds were prepared from stoichiometric mixtures of Ag₂O (AR, 99.9%), MoO₃ (AR, 99.5%), and the corresponding rare earth oxides (99.95%). In the case of Tb, Tb₄O₇ were used directly; no attempt was made to first form the sesquioxide. The samples were mixed with ethanol (AR) in agate mortars, fired at 800°C for 50 hr with an intermediate regrinding to enhance the activity, and then cooled slowly to room temperature.

X-ray powder diffraction analysis was carried out on a Rigaku denki D/max-IIB diffractometer using Cu $K\alpha$ ($\lambda = 0.1542$ nm) radiation. Silicon powder was used as the internal standard. The IR spectra were measured on a FTS-20E IR spectrometer. The excitation and emission spectra were measured with a Hitachi MPF-4 fluorescence spectrophotometer.

3. RESULTS AND DISCUSSION

Structure

Cell parameters, c/a, and volumes of all compounds are listed in Table 1. The c/a values are almost constant indicating that the AgLnMo₂O₈ compounds all form the same structure with closely scheelite-related tetragonal symmetry. So the conclusion is made that all rare earth ions (Eu, Gd, Tb) are trivalent in the compounds. The X-ray powder diffraction data for the three AgLnMo₂O₈ which were calculated by us fit the experimental data very well.

IR Spectra

The IR spectra of Ag*Ln*Mo₂O₈ (*Ln* = Eu, Gd, and Tb) in the region 400–1000 cm⁻¹ were recorded (Fig. 1). The $A^{II+}Mo^{VI+}O_4$ scheelite oxides, having S_4 site symmetry for the MoO₄²⁻ group, show three absorption bands in this region, around 890, 820, and 420 cm⁻¹, which correspond respectively to the ν_1 , ν_3 , and ν_2 modes of the tetrahedral MoO₄²⁻ group (9). As shown in Fig. 1, all of Ag*Ln*Mo₂O₈

TABLE 1 Unit Cell Parameters for the Ag $LnMo_2O_8$ (Ln = Eu, Gd, Tb) Oxide

Compounds	System	<i>a</i> (nm)	<i>c</i> (nm)	c/a	<i>V</i> (nm ³)
AgEuMo ₂ O ₈	tetra.	0.5267	1.1552	2.193	0.320
AgGdMo ₂ O ₈	tetra.	0.5248	1.1510	2.193	0.317
AgTbMo ₂ O ₈	tetra.	0.5224	1.1456	2.193	0.313

TABLE 2 Luminescence Data of Double Molybdates at Room Temperature

Compound	Luminescent center	Excitation max (nm)	Emission max (nm)	Stokes shift (10^3 cm^{-1})
AgEuMo ₂ O ₈	Eu ³⁺	465	611	5.1
AgGdMo ₂ O ₈	MoO_4^{2-}	330	597	13.6
AgTbMo ₂ O ₈	Tb^{3+}	486	537	2.0

have the same IR spectral pattern. The ν_3 mode has three components around 830, 790, and 700 cm⁻¹, respectively; the ν_2 has only one sharp peak at 420 cm⁻¹; the ν_1 mode has one peak at 890 cm⁻¹ in Ag*Ln*Mo₂O₈. This confirms that the Ag*Ln*Mo₂O₈ (*Ln* = Eu, Gd, Tb) oxides crystallize with scheelite-related structure with MoO₄²⁻ tetrahedra other than those of Cs*Ln*W₂O₈ with WO₆ polyhedra (9, 10).

Fluorescent Behavior

The excitation and emission spectra of $AgEuMo_2O_8$ are shown in Fig. 2. In spite of the high Eu^{3+} concentration

Wavenumbers (cm⁻¹)

FIG. 1. IR spectra for $AgLnMo_2O_8$ oxides. (a) $AgEuMo_2O_8$, (b) $AgGdMo_2O_8$, (c) $AgTbMo_2O_8$.

the Eu³⁺ emission is very efficient. Under any excitation wavelength, the emission is very efficient. Under any excitation wavelength, the emission consists of Eu³⁺ emission only. The 7F_2 transition of Eu³⁺ dominates the emission and is evidence of the noncentrosymmetric geometry of the Eu³⁺ site in these scheelite compounds. The excitation spectrum of the Eu³⁺ emission consists of the characteristic Eu³⁺ lines and the weak band corresponding with the molybdate group absorption band (Fig. 2).

The emission spectrum of AgTbMo₂O₈ shows the wellknown ${}^{5}D_{4}-{}^{7}F_{J}$ transitions of the Tb³⁺ ion (Fig. 3), of which display an uncommon feature that a single emission line of the ${}^{5}D_{4}-{}^{7}F_{2}$ transition is by far stronger than any other line in the visible region.

For molybdate excitation (Fig. 3, left) the Tb^{3+} shows its most intense peak at 486 nm; the broad band of the MoO_4^{2-} group is relatively much stronger than that in AgEuMo₂O₈. However, no molybdate group emission could be observed at room temperature in either the Tb^{3+} or Eu³⁺ compounds.

The broad band in the UV region of the excitation spectra of the Eu^{3+} and Tb^{3+} emission indicates efficient energy transfer from the molybdate group to Eu^{3+} and Tb^{3+} , as discussed in literature (6). The luminescent intensity remains strong for the Eu^{3+} and Tb^{3+} end member compounds by the way of diluting the Eu^{3+} and Tb^{3+} sublattice with a nonluminescent ion Gd^{3+} . This indicates that energy migration in the concentrated compounds over the Eu^{3+} and Tb^{3+} sublattice to acceptor sites is an inefficient process.

The excitation spectrum of AgGdMo₂O₈ shows only a broad band around 350 nm with very poor intensity and its emission spectrum also shows a broad band of the MoO_4^{2-} group around 600 nm with weak intensity too. However, the emissions of Gd³⁺ and Ag⁺ are not observed in the region.

Luminescence data are given in Table 2.

ACKNOWLEDGMENTS

Our acknowledgment goes to the National Science and Technology Committee of China and the National Natural Science Foundation of China for their financial support.

Wavelength (nm)

FIG. 2. Excitation (left, emission wavelength 611 nm) and emission (right, excitation wavelength 465 nm) spectra of AgEuMo₂O₈ at room temperature. The figures denote the value of J in the transitions ${}^{5}D_{0}-{}^{7}F_{J}$.

FIG. 3. Excitation (left, emission wavelength 537 nm) and emission (right, excitation wavelength 486 nm) spectra of AgTbMo₂O₈ at room temperature. The figures denote the value of J in the transitions ${}^{5}D_{4}{}^{-7}F_{J}$.

REFERENCES

- F. A. Kroger, "Some Aspects of the Luminescence of Solids." Elsevier, Amsterdam, 1948.
- 2. L. G. Van Uitert, J. Chem. Phys. 37(5), 981 (1962).
- 3. L. G. Van Uitert, R. R. Soden, and R. D. Linares, J. Chem. Phys. **36(7)**, 1793 (1962).
- 4. L. G. Van Uitert, J. Electrochem. Soc. 110(1), 46 (1963).
- 5. L. H. Brixner, Inorg. Chem. 16(2), 336 (1977).

- C. C. Toradi, C. Page, L. H. Brixner, G. Blasse, and G. T. Dirksen, J. Solid State Chem. 69, 171 (1987).
- 7. J. P. M. Van Vliet, G. Blasse, and L. H. Brixner, *J. Solid State Chem.* **76**, 160 (1988).
- H. Yamamoto, S. Seki, and T. Ishiba, J. Solid State Chem. 94, 396 (1991).
- R. G. Brown, J. Denning, A. Hallett and S. D. Ross, *Spectrochim.* Acta Sect. A 26, 963 (1970).
- 10. J. Hanuza and L. Macalik, Spectrochim. Acta Sect. A 43, 361 (1987).